
MeshKit: An Open-Source Toolkit for 
Mesh Generation

Tim Tautges, Argonne National Laboratory

Jason Kraftcheck, Univ of Wisconsin-Madison

Jim Porter, Univ of Wisconsin-Madison

The Fathom team:

Argonne: Alvaro Caceres, Iulian Grindeanu, Rajeev Jain, Dmitry 

Karpeev, Hong-Jun Kim

UW: Shengyong Cai, Steve Jackson, Jiangtau Hu, Brandon Smith, 

Chaman Verma, Stuart Slattery, Paul Wilson

SIAM Computational Science & Engineering, Mar 3, 2011



2

Outline

� Motivation

� The Meshing Problem(s)

� A DiGraph-Based Approach

� MeshKit Design

� Examples



3

Motivation

� How do we view the forest (as opposed to the trees) of mesh generation?

– Traditionally, the meshing process follows geometric topology

– If you look further, though, it’s a bit more general than that, more akin to a digraph-
based model (of which a geometric topology is a special case)

� Other things are pretty important when you start looking into the trees, too

– Infrastructure, especially for geometry-based meshing

– Availability of a stable of basic meshing capabilities (edge/tri/tet meshers, smoothing, 
refinement, visualization, quality analysis, …)

� Developing a meshing library is not a new idea (Netgen, gmsh, tetgen, CAMAL, …)

– However, writing a meshing library that supports interoperability* is

• *Interoperability in mesh database, geometric model, best-in-class tools and algorithms from 
various sources

� We need a meshing library that supports needs of two communities

– Users, so they can generate meshes

– Developers, so they can start developing specific algorithms right away, instead of after 
they spend a few years on a good infrastructure

� Open source model more important in meshing than in other areas

– No matter how good the tool, you’ll always reach a point where it doesn’t work for your 
problem

– Sometimes it’s a matter of one key capability that’s special to your problem, with the 
other 95% of your problem treated by existing tools



4

Other Meshing Libraries

� CAMAL 5.1 (SNL, proprietary)

– Algorithms for tri, quad, tet, hex (sweep, map, submap)

– Geometric evaluation by application-provided implementations of abstract classes 

CMLCurveEval and CMLSurfEval

– API in terms of node positions & connectivity, no high-level “mesh” datatypes

• No support for assembling bounding mesh from geometry

� Gmsh (GPL)

– Algorithms for tri, quad (recombine), tet, hex (extrude)

– Reconstruction of parametric space for disk and non-disk surfaces, using harmonic maps

– Direct links to OCC-based geometry

� VTK, SciRUN, Salome (LGPL or better)

– Frameworks that include meshing, along with lots of other stuff

– Tend to be all or nothing

� In general, difficult to mix and match algorithms from different sources

– Especially when considering geometric model and use of higher-level API for mesh



5

vol1

s1 s2 s3

c1 c2

ver1 ver2

vol1

s1 s2 s3

ver1 ver2

c2c1

The Meshing Problem(s)

� Geometry-based meshing

– Mesh vertices

– Mesh edges

– Mesh surfaces

– Mesh volume

� Sweep dependencies



6

The Meshing Problem(s)

� Mesh Copy/Move/Merge

� Watertight models

� Embedded Boundary Meshing

� Mesh-Based Geometry



7

DiGraph-Based Organization of Meshing Problem

� Overall, mesh generation can be approached as digraph-based process, with 
nodes as operations and edges as dependencies

– More flexible, can express wider variety of complex, mesh-related operations

– Explicit representation of meshing dependencies allows parallelization of the process

– May facilitate updating the mesh after small changes

� Various types of graph nodes

– Meshing algorithm applied to one geometric entity

– One algorithm applied to a collection of entities

• VertexMesher, EdgeMesher

– Mesh-based operation applied to results of preceding operation

• Mesh, then smooth, then refine

� However, be careful about graph complexity seen by users

– These graphs can get complicated, fast

– Support automatic construction of graph nodes, based on constraints from specific 
meshing algorithms

• E.g. tet mesher needs surfaces meshed with tris

� 2 phases of graph execution

– Setup, where algorithms express their requirements (possibly by constructing more 
nodes)

– Execute, where mesh gets generated or operation gets performed



8

Example of DiGraph-Based Mesh Generation
� Directed graph, with single (trivial) root, leaf nodes

� Executed in two phases:

– Setup: Topological-sort traversal from leaf to root, possibly adding (or moving) nodes 

upstream

– Execute: Topological-sort traversal from root to leaf

� Example: tri-mesh a surface

User-specifiedAutomatic

setup_thissetup_this

execute_this execute_this execute_this

Trimesh

S1

EdgeMesh

C1, C2

VertexMesher

V1,V2
R L

R L Leaf nodeRoot node

execute

setupsetup_this

trimesh

edgemesh

vertexmesh



9

More Complicated Example: Sweep-Mesh a Volume



10

MeshKit: C++ Library for Mesh Generation
Core Classes
� MKCore

– MeshKit instance class

– isA digraph, hasA (single) root, leaf nodes of digraph

– Keeps references to geometry, mesh, relations interface instances

� ModelEnt

– Geometric model entity, mesh set handles

– Limited set of commonly needed functions, e.g. geometry evaluation, topology traversal

– In traditional meshing, corresponds to (CAD) geometry entity

• In other cases, e.g. mesh copy/move, no corresponding CAD entity

– MeshedState: NO_MESH, BOUNDARY_MESH, SOME_MESH, COMPLETE_MESH, 

REFINED_MESH, POST_MESH

� MeshOp

– isA digraph node

– Keeps a map<ModelEnt*, moab::Range>, to store mesh generated or operated on by 

this MeshOp

– Can mesh multiple entities with one MeshOp instance

• Fewer graph nodes

– Or, separate instances of a given MeshOp

• E.g. if different input needed



11

Dynamic Registration of MeshOps

� MeshKit is meant to support both mesh generation users, and mesh generation 

developers

– Need to support dynamic registration of new MeshOp classes

� Would like to enable both requesting MeshOps by name, or automated 

construction based on ability to mesh a given ModelEnt or produce a given mesh 

entity type

� Accomplish this by requiring a specific set of functions for a MeshOp, and 

registering the MeshOp with MKCore

� These MeshOp functions need to be defined:

– Constructor with arg list (MKCore *, MEntVector &)

– static const char *name() – name by which this MeshOp is requested

– static const moab::EntityType* output_types() – array of mesh 

entity types produced / operated on by this MeshOp (terminated by 

moab::MBMAXTYPE)

– static bool can_mesh(iBase_EntityType dimension) – returns true if 

the MeshOp can mesh model entities of this dimension

– bool can_mesh(ModelEnt* ent) – returns true if this MeshOp can mesh the 

specified entity



12

MeshOp Registration, Construction

� Tried really hard for static registration from each MeshOp’s compilation unit

� But, for static library case, if the new MeshOp isn’t referenced by name directly or 

indirectly from an application, it doesn’t get pulled in from library at link time

– Instead, calls to register MK-native MeshOps are put in a few static functions, which are 

referenced from MKCore

– Application-defined MeshOps can be registered from main, or from any function linked 

into final application

� To register a MeshOp: create a global proxy object using:

#include "meshkit/RegisterMeshOp.hpp"

RegisterMeshOp<MyMesher> MyMesher_GLOBAL_PROXY;

– Proxy object registered with MeshOpSet singleton accessed through MKCore

– This object should persist throughout program execution

� Once registered, a new MeshOp can be constructed by name:

mk->get_entities_by_dimension(1, curves);

MyMesher *mm = (MyMesher*) mk->construct_meshop(“MyMesher", curves);



13

MeshOp setup_this(), execute_this() functions

� setup_this()

– Creates graph nodes that represent prerequisites, e.g. for surface mesher, mesh the 

boundary; that is, it “sets up” the meshing process for entity(ies)

– For trivial or automatic cases, can call MeshOp::setup_boundary()

• Automatic: use default scheme for dimension, which is 1st MeshOp type for that dimension 

registered in MKCore

– This function often results in new MeshOps getting created, and put in the graph upstream 

of the current MeshOp

– For more complicated situations, e.g. automatic scheme selection, this may involve deeper 

changes to the graph

• Needs more study

� execute_this()

– Is where the typical mesh generation or mesh-based operation happens

– If setup was done properly, all prerequisites will be satisfied by the time this is called

– Most put generated mesh into MeshOp::MEntSelection (map<ModelEnt*, moab::Range>) 

• Provides some reversibility

• At this point, don’t intend to store extra data, e.g. new vertex positions, so not completely 

reversible

� MKCore, MeshOp both implement setup(), execute(), which just perform the setup

and execute traversals from leaf/root (MKCore) or current node (MeshOp)



14

Example MeshOp: EdgeMesher

� setup_this():

for (MEntSelection::iterator mit = mentSelection.begin(); 

mit != mentSelection.end(); mit++) {

ModelEnt *me = mit->first;

// check if already meshed, and return if so

if (me->get_meshed_state() >= COMPLETE_MESH || 

me->mesh_intervals() > 0) continue;

// check/compute the intervals for this ModelEnt

check_intervals(me);

}

// assign bounding vertices to VertexMesher

setup_boundary();

� execute_this():

– Typical parametric-space edge meshing

– Equal, bias, dual (bias), and curvature options



15

Example MeshOp: CAMALPaver
� (see src/extern/CAMAL/CAMALPaver.cpp)



16

External Libraries

� Important to support both OSS and non-open libraries/algorithms

� General rule: if library/algorithm is LGPL or compatible, will bundle that code with 

MeshKit

– Netgen (tri, tet)

– Qslim1.0 (decimation)

– Mesquite (smoothing)

– Verdict (mesh quality)

– LEMON (graph)

� Otherwise, support through wrappers enabled by configure-time option

– CAMAL (SNL)

– Gmsh (GPL)

– Other



17

Other Details

� Graph functionality imported from Lemon graph library

– Like Boost Graph Library, but with fewer templates-on-templates

– Right now, accessing graph through mix of methods on MeshKit classes and direct 

calling of Lemon functions on graph + nodes/edges  returned from those classes

• Probably better to make a GraphNode class in MeshKit core, put all graph-accessing functions 

and members there

– Right now, only MeshOps can be graph nodes

• Eventually, probably need others, e.g. maybe ModelEnt should also be derived from 

GraphNode

� That pesky interface question

– Geometry and relations accessed through iGeom, iRel

– For mesh, access through MOAB or iMesh interfaces

• Need MOAB for trees, ranges, Skinner, other MOAB-only capabilities

• iMesh and MOAB instances both available from MKCore

• To support other databases, will require implementing MOAB interface on top of iMesh or the 

other database



18

Other Details (2)

� Scripting

– Eventually, will have Python interfaces generated automatically

– It’s been recommended to me that we also bundle a Python interpreter directly with 

MeshKit; sounds like a good idea, at least for some apps

� Documentation extremely important

– Everything in MeshKit should be born (and probably conceived) documented

– Will use doxygen almost exclusively for documentation

• It can do more than most people realize



19

Algorithms Available in MeshKit 0.9…

Copy/Move/

Merge/Extrude

JaalQuad

SCDMesh

EBMesh



20

Algorithms Available in MeshKit 0.9…

5M pts 20k pts

Qslim

(Decimate) Facet-Based

Surface

Size=1km

CAMALPaver

� CAMALTriAdvance

� CAMALTetMesher

� NGTetMesher (Netgen)

� OneToOneSwept

� MesquiteSmooth

� EdgeMesher

� VertexMesher

� (others)



21

Future Plans

� Native tri mesher (Triangle?  Netgen?  Home-grown?)

� Tri, tet, hex (parallel) refinement

� Parallel mesh merge

� Auto-generated Python interfaces

� Interval matching

� More work on graph-based approach



22

Conclusions

� Need an open-source mesh generation environment, that

– Supports both users and developers

– Has bridges to non-open-source meshing algorithms

– Is flexible in how various algorithms interact

� Graph-based meshing process captures many of the relevant workflows in mesh 

generation

� MeshKit designed to support these uses

� V0.9 (almost) ready (targeting mid-April release)

� Meshkit-announce (https://lists.mcs.anl.gov/mailman/listinfo/meshkit-announce) 

for details



23

Copy/Move/Merge/Extrude

� CopyMesh, ExtrudeMesh, MergeMesh

� Works with any type of 2D, 3D elements

� 15mins start to finish for 12M element 

hex mesh (Linux desktop workstation) 

– Geometry construction

– Assembly meshing

– Copy/move/merge

� Boundary conditions, material definitions 

handled using set abstractions:

– Copy set: new set with entity copies

– Expand set: entity copies added to same set

– Extrude set: entities replaced with (d+1)-

dimensional extrusions

� Allows handling of various set types with a 

common abstraction

� Will work similarly for refinement

� F, C: expand sets

� V1: copy set

� Side: extrude set

Side

F

C

F
F

F

V2

V3

V4

V1

V2

V3

V4

V1

Side

Side

F

C

V1



Jaal QuadMesher

� Tri-quad conversion using deterministic tree matching algorithm

� Cleanup: local (singlet, doublet, diamond removal), global (Bunin's algorithm)

� Provable robustness, with very few irregular nodes in final mesh

� Currently, 20k quadrilaterals/sec (~2.4GHz Linux workstation)

5658 nodes, 10669 triangles 5192 nodes, 4868 quads



Structured Background Mesher (SCDMesh)

� Generates a structured Cartesian 

grid using a geometric entity's 

bounding box

� Adjustable or equal spacing

� Supports EBMesh, and basic 

structured mesh generation



26

Embedded Boundary Mesh Generation (EBMesh)

� Find inside/boundary/outside elements

in Cartesian mesh surrounding a body

� Uses fast, robust ray tracing based on

hierarchical OBBs in MOAB

� 10x faster than Cart3D

� Uses SCDMesh

Cart3D

(no ref’t)

Cart3D

(with ref’t)

EBmesh

Log-log generation time

T
im

e
 (

se
c)

# intervals/side



27

Decimation (Qslim)

� Surface mesh decimation based on Qslim1.0 (Garland, UIUC)

� Main method of decimation: Edge Contraction

� Minimize certain error (quadrics)

decimation

10 million triangles

high resolution 20 k triangles



28

Facet-Based Geometry (FBiGeom)

� C1-continuous facet-based geometric representation 

(Owen et al, ’02), implemented in MOAB

� FBiGeom provides limited iGeom API based on smooth 

facet-based geometry 

� 2 options: linear or smooth evaluations

iGeom

FBiGeom MOAB

Size=1km

20 k triangles

CAMALPaver


